rmapzen
is a client for any implementation of the Mapzen
API. Though Mapzen itself has gone out of business,
rmapzen
can be set up to work with any provider who hosts
Mapzen’s open-source software, including geocode.earth, Nextzen, and NYC GeoSearch from NYC
Planning Labs. For more information, see https://www.mapzen.com/documentation/.
The project is available
on github as well as CRAN.
rmapzen
provides access to the following Mapzen API
services:
rmapzen
works with API providers who implement the
Mapzen API. In order to specify provider information (such as URL and
API key), use mz_set_host
. There are custom set-up
functions for the following providers:
mz_set_search_host_geocode.earth
mz_set_tile_host_nextzen
.mz_set_search_host_nyc_geosearch
.As of this writing, there are no public providers offering the Mapzen isochrone service.
All of the services in Mapzen search have been implemented. Search functions:
mz_search
mz_reverse_geocode
mz_autocomplete
mz_place
mz_structured_search
(what’s
this?)Each of those functions returns a mapzen_geo_list
. The
sample dataset oakland_public
contains the results of
mz_search("Oakland public library branch")
on January 8,
2017:
#> GeoJSON response from Mapzen
#> Attribution info: https://search.mapzen.com/v1/attribution
#> Bounds (lon/lat): (-122.29, 37.74) - (-122.17, 37.85)
#> 25 locations:
#> Oakland Public Library - Temescal Branch (-122.26, 37.84)
#> Oakland Public Library - Rockridge Branch (-122.25, 37.84)
#> Lakeview Branch Oakland Public Library (-122.25, 37.81)
#> Golden Gate Branch Oakland Public Library (-122.28, 37.84)
#> Brookfield Village Branch Oakland Public Library (-122.19, 37.74)
#> ...
mz_bbox(oakland_public)
#> # A tibble: 1 × 4
#> min_lon min_lat max_lon max_lat
#> <dbl> <dbl> <dbl> <dbl>
#> 1 -122. 37.7 -122. 37.8
as.data.frame(oakland_public)
#> # A tibble: 25 × 26
#> id gid layer source source_id name housenumber confidence accuracy
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <chr>
#> 1 way:12568… open… venue opens… way:1256… Oakl… 5205 0.926 point
#> 2 way:43255… open… venue opens… way:4325… Oakl… <NA> 0.926 point
#> 3 way:36977… open… venue opens… way:3697… Lake… <NA> 0.664 point
#> 4 5352843 geon… venue geona… 5352843 Gold… <NA> 0.663 point
#> 5 node:3681… open… venue opens… node:368… Broo… <NA> 0.663 point
#> 6 way:43919… open… venue opens… way:4391… West… 1801 0.663 point
#> 7 node:3681… open… venue opens… node:368… Elmh… <NA> 0.663 point
#> 8 node:3681… open… venue opens… node:368… Mont… <NA> 0.663 point
#> 9 way:28376… open… venue opens… way:2837… Main… 125 0.663 point
#> 10 node:3681… open… venue opens… node:368… Lati… <NA> 0.663 point
#> # ℹ 15 more rows
#> # ℹ 17 more variables: country <chr>, country_gid <chr>, country_a <chr>,
#> # region <chr>, region_gid <chr>, region_a <chr>, county <chr>,
#> # county_gid <chr>, locality <chr>, locality_gid <chr>, neighbourhood <chr>,
#> # neighbourhood_gid <chr>, label <chr>, street <chr>, postalcode <chr>,
#> # lon <dbl>, lat <dbl>
Search can, optionally, be constrained to a particular country, data
layer, boundary rectangle, or boundary circle. Furthermore, search can
prioritize results near a given “focus” point. See
?mz_search
.
rmapzen
provides an interface to Mapzen’s vector tiles
service. Tile requests can be specified using the x, y, zoom
coordinates of the tile service, as well as with a lat/long bounding
box. Multiple tiles are stitched together and returned as an object of
class mz_vector_tiles
. See ?mz_vector_tiles
.
The sample data set ca_tiles
contains zoomed out vector
tile data for all of California as well as parts of neighboring
states.
ca_tiles
#> Mapzen vector tile data
#> Layers: (count of features in parentheses)
#> water (144)
#> buildings (0)
#> places (28)
#> transit (10)
#> pois (30)
#> boundaries (22)
#> roads (308)
#> earth (4)
#> landuse (176)
Each element of a vector tile response includes point, line, and/or
polygon data for an individual map layer, and has class
mapzen_vector_layer
. Like other response types, the
mapzen_vector_layer
can be converted to sf
objects for further processing, using the generic function
as_sf
# points of interest
as_sf(ca_tiles$pois)
#> Registered S3 method overwritten by 'geojsonsf':
#> method from
#> print.geojson geojson
#> Simple feature collection with 30 features and 11 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -123.536 ymin: 32.009 xmax: -112.58 ymax: 48.808
#> Geodetic CRS: WGS 84
#> # A tibble: 30 × 12
#> kind protect_class area operator `name:de` source min_zoom tier
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 national_park 2 1377580… United … <NA> opens… 5.58 1
#> 2 national_park 2 2035390… United … <NA> opens… 5.29 1
#> 3 national_park 2 2132460… United … National… opens… 3.6 1
#> 4 national_park 2 2543010… United … <NA> opens… 5.13 1
#> 5 national_park 2 2552470… United … Sequoia-… opens… 5.13 1
#> 6 national_park 2 2740480… United … National… opens… 5.08 1
#> 7 national_park 2 2812880… United … Kings-Ca… opens… 5.06 1
#> 8 national_park 2 4671080… United … Joshua-T… opens… 4.7 1
#> 9 national_park 2 4858760… United … Yosemite… opens… 4.67 1
#> 10 national_park 2 7790180… United … Olympic-… opens… 4.33 1
#> # ℹ 20 more rows
#> # ℹ 4 more variables: osm_relation <chr>, name <chr>, id <chr>,
#> # geometry <POINT [°]>
sf
conversionAny object returned by a Mapzen service can be converted to the
appropriate sf
object using the generic as_sf
,
for easy interoperability with other packages. You can also convert most
objects directly to data frames, allowing for use within tidy
pipelines:
library(dplyr)
library(sf)
as_sf(oakland_public) %>%
select(name, confidence, region, locality, neighbourhood)
#> Simple feature collection with 25 features and 5 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -122.2854 ymin: 37.73742 xmax: -122.1749 ymax: 37.84632
#> Geodetic CRS: WGS 84
#> # A tibble: 25 × 6
#> name confidence region locality neighbourhood geometry
#> <chr> <dbl> <chr> <chr> <chr> <POINT [°]>
#> 1 Oakland P… 0.926 Calif… Oakland Shafter (-122.2625 37.83824)
#> 2 Oakland P… 0.926 Calif… Oakland Rockridge (-122.2511 37.84)
#> 3 Lakeview … 0.664 Calif… Oakland <NA> (-122.249 37.80919)
#> 4 Golden Ga… 0.663 Calif… Oakland Gaskill (-122.2822 37.83937)
#> 5 Brookfiel… 0.663 Calif… Oakland South Stoneh… (-122.1886 37.73742)
#> 6 West Oakl… 0.663 Calif… Oakland Ralph Bunche (-122.2854 37.81296)
#> 7 Elmhurst … 0.663 Calif… Oakland Webster (-122.1749 37.75154)
#> 8 Montclair… 0.663 Calif… Oakland Montclair (-122.2141 37.83204)
#> 9 Main Bran… 0.663 Calif… Oakland Civic Center (-122.2638 37.80101)
#> 10 Latin Ame… 0.663 Calif… Oakland St. Elizabeth (-122.2225 37.78354)
#> # ℹ 15 more rows
Currently, the following methods are available to pull out commonly used pieces of a response:
mz_coordinates
(only available for search results):
extracts lat/lon coordinates from search results, and returns them as a
data.frame
.mz_bbox
: returns the bounding box of an object as a
data.frame
with columns min_lon
,
min_lat
, max_lon
, and
max_lat
.